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ABSTRACT

This paper describes the new Engine Management
System (EMS)  ME7.

Torque and A/F demands for modern EMS result from
both, internal functions (i.e. engine start, idle speed
control, catalyst heating) and external systems (i.e.
driver’s request, transmission or vehicle dynamic
control). With ME7 these demands are processed to
the optimized actions of the actuators by a centrally
coordinated torque and A/F management. The design
of the functions is physically based to provide optimum
portability and minimum calibration time. Examples are
given for the physical manifold pressure model and the
cylinder charge control of ME7 with electronic throttle
control.

The real time operating system „ERCOS“ and a layer
based software architecture enable the implementation
of these functions in a flexible family of products for
current and future systems.

Topics, such as warm-up strategies for catalysts in
conventional port injection systems, gasoline direct
injection systems (with their switch-over strategies
between stoichiometric and stratified operation), NOx
catalyst control, and the requirements of future
integrated drive train management systems, all require
maximum flexibility and expandability.

The introduction of the ME7 is an important step
towards this future. The design represents a good
basis for development sharing with customers and is
also an important prerequisite for the vehicle
management system CARTRONIC.

1.  INTRODUCTION

The functional structure of engine management
systems has evolved over several years [Ref. 1].
Starting with a simple injection system with a separate
ignition unit in the early 70’s, injection and ignition were
integrated into one single electronic control unit during
the 80’s. A modern EMS is comprised of a large
number of subsystems, and not only controls basic
EMS-functions such as injection and ignition timing or
emission control (i.e. Lambda closed loop control or
catalyst heating) but also manages additional functions,
such as continuous camshaft control, resonance flap
actuation or engine fan control. A modern EMS must

also be equipped with a complete on-board diagnostic
and monitoring system.

The introduction of electronic throttle control (ETC) as a
drive-by-wire system with it’s adjustable relationship
between the pedal position and throttle position
enables the EMS to now control all torque-influencing
outputs over the entire operating range of the engine.
With stand alone ETC systems, mutual functional
impacts have to be considered, such as idle speed
control which must be divided into the two subsystems.
The fully integrated system with control of injection,
ignition and cylinder charge can eliminate this
drawback but then a complete redesign of the entire
system is required.

The new functional architecture of the ME7 system is
characterized by the following main features:

• Centrally coordinated torque management:
 The engine torque represents the central system

variable. All torque requirements derived from EMS
internal functions or external systems (i.e. drive
train or vehicle dynamic control) result in a variation
of torque or efficiency and are defined on this
basis.

• Centrally coordinated A/F management:
 Similarly, all mixture demands are coordinated in

one central manager. Based on the operating
conditions, a set of basic functions controls the A/F
ratio within the physical limits defined by the
flammability of the mixture.

• Subsystems based on physical models with
physically defined interfaces:

 The use of physically based functions improves the
transparency of the system’s architecture.
Computed values can be directly compared with
physically measurable values.

Using physically based functions in combination with a
centrally coordinated torque and A/F management
allows for an improved handling of  function variants.
Due to their relationship to the physical structure, single
functions as well as functionally linked groups of
functions (subsystems) could be easily compared with
customer’s requests using physically measured values.
Therefore a set of basic platform functions was realized
and applied over the entire EMS family.

The realization of an appropriate Software structure
guarantees the system’s modularity which allows
different customer’s requests to be met as well as



future challenges. By means of the torque based
functional structure the software implementation is
independent of demands generated by external
systems. The real time operating system „ERCOS“ and
a layer based software architecture enable a system
evolution with optimum portability at a high level for
future microcontrollers. Most of the functions are
realized in the programming language ANSI C, to
provide good modularity and integration of customer
specific functions.

2.  A NEW FUNCTIONAL AND SOFTWARE
STRUCTURE FOR ENGINE MANAGEMENT
SYSTEMS

2.1  ME7 SYSTEM OVERVIEW

2.1.1 System Configuration  

Figure 1 shows an ME7 system overview with the main
sensors and actuators. In addition to the components
of a conventional EMS, the system is comprised of the
ETC related elements, which include the accelerator
pedal module to interpret the driver’s request, the
throttle actuator for cylinder charge control and the
cruise control lever.

2.1.2 Brief Functional Overview

The ME7 contains all functions to control a modern SI-
engine. In this section only a brief functional overview is
given. Due to the system’s modularity very different
system configurations can be realized. For example
systems with different sensors for cylinder charge
determination (air mass or speed density), naturally
aspirated or turbocharged engines, engines with or
without EGR and engines with variable camshaft
actuation are possible. The main system features are
as follows:

• The engine torque management which controls all
torque influencing actuators (see also section
‘Functional Structure’).

• A/F ratio control with a central A/F manager, λ-pilot
control, λ-closed loop control, or alternatively with a
Nernst or universal λ-sensor and trim control
(details see section ‘Functional Structure’).

• Sequential, cylinder individual fuel injection.
• Ignition timing, including control of dwell angle and

ignition angle.
• Cylinder individual knock control.
• Emission control functions for optimized emissions

during cranking, start and after start which enable
the realization of different catalyst warm-up
strategies, using a lean mixture or a rich mixture

Figure 1: Engine Management System ME7



including exhaust gas recirculation (EGR) and
secondary air injection (SAI) control if necessary
[Ref. 2], [Ref. 3].

• Canister purge control based on canister charge.
• Idle speed control.
• Diagnostic and monitoring functions:
• The system is comprised of the complete OBD II

functionality to meet both MY ‘98 and future EOBD
requirements. A torque-based monitoring systems
supervises the throttle control under all operating
conditions and reacts with the appropriate limp-
home functionality in case of a failure.

• To communicate with external systems, such as a
transmission control system or a vehicle dynamic
control system, torque demands can be received
via a torque interface, realized via CAN. Therefore
the EMS is able to process external torque
demands within the torque manager. (see also
section ‘Functional Structure’).

• Conventional or continuous camshaft control.
• Resonance flap actuation.
• Engine fan control.
• Control of air-conditioner (A/C).
• Cruise control.
• The system contains the necessary interfaces to

application tools, end of line programming tools,
service and SCAN-tools.

• Immobilizer.
• Additional customer defined functions as required.

2.2  FUNCTIONAL STRUCTURE

Essential functional features of the ME7 structure are
the central torque and A/F management and the use of
physically-based functions.

2.2.1 Torque-based system structure  

2.2.1.1 Structural approach

Choosing a torque-based system architecture was
initiated by the followings concerns when the previous
situation was analyzed  [Ref. 4], (Figure 2)

Figure 2: Influences on Engine Torque
- previous situation

In the case of several torque or efficiency demands,

derived simultaneously from different subsystems,
there was no central torque coordination. This meant,
that subsystems inside the EMS as well as external
systems directly required, for example, a reduction of
the throttle or an ignition retard to obtain a certain
torque reduction. The priority of each demand had to
be defined independently in each subsystem. This lack
of a central coordination caused interactions of different
demands (due to shifts of operation points) resulting in
a strong interdependence of calibration data of the
different subsystems (i.e. calibration of ignition timing
influenced idle speed pilot control).

On the contrary the functional structure of the ME7
system is characterized by two coordination steps
(Figure 3).

• Torque demand manager:
 Input values for the torque demand manager are all

internal and external requirements which can be
defined as a torque or efficiency value. Internal
demands are for example generated by the start
function, idle speed control, engine speed
limitation, as well as engine protection functions or
catalyst heating. External torque demands are
defined by the driver, cruise control, or vehicle
dynamic control. The major task of the torque
demand manager is the priority handling which is
processed by a minimum/maximum selection.

• In the next step the resulting torque demands are
processed in driveability functions (mostly filtering
or slope limiting functions), dashpot function (to
limit the minimal intake manifold pressure) and the
anti-jerking function. The driveability functions, due
to customer’s requests, allow calibrations over a
wide range of applications. The calibration can vary
between a comfortable and a sportive
characteristic.

Figure 3:Influencing Engine Torque -
 Situation with Torque-Based System Structure

The output value of this management block is a
resulting torque demand, taking the required
efficiency into consideration, which is equal to 1.0
during normal operation and which can be reduced
for example during catalyst heating.
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 In a second step the resulting torque demand is
converted into the available controller outputs
which are able to adjust the engine output torque.
These controller outputs are the throttle angle,
ignition timing and injection timing (including a
cylinder individual fuel cut-off) supplemented by a
waste-gate control in the case of  turbocharged
engine.

 
This simple structure can be extended in case of  highly
dynamic torque demands resulting for example from
vehicle dynamic control. In this case two resulting
torque demands are defined:

• The long-term torque demand has to be realized
via a variation of  the cylinder charge. This demand
results in a variation of the throttle position and the
waste-gate opening, which means that it’s dynamic
behavior is limited for example by the regulating
speed of the throttle actuator and the time constant
of the intake manifold which can amount to several
100 ms at low engine speeds.

• A separate short-term demand is realized via the
crank synchronous controller outputs (injection and
ignition timing) which enable a modification of
engine torque within the following combustion cycle.
With the separate short-term component all highly
dynamic torque demands, which only last some 100
ms can be realized without affecting the slow
cylinder charge path. Examples for highly dynamic
demands are the torque reduction generated in a
transmission control for a comfortable gear shifting
or a quick and short demand when the vehicle
dynamic control is active.

2.2.1.2 Internal torque model

Figure 4: Torque definitions concerning
 the drive train

Figure 4 illustrates different torque values related to a
drive train. Influenced by the major input variables

• relative cylinder charge (fresh air mass per stroke),
• Lambda (A/F ratio related to a stoichiometric ratio)

and
• ignition timing

the combustion generates an internal torque „tq_i“,

which does not yet consider losses caused by the gas
exchange. Therefore „tq_i“ differs from the value of
indicated torque represented by the work integral from
the entire 4-stroke process. Subtraction of losses
derived from gas exchange and friction leads to the
engine output torque. The clutch torque results when
taking into account the torque which is necessary to
drive auxiliary components such as the alternator, the
steering pump or the A/C.

Taking the torque losses and the gear ratio inside the
torque converter, the gear box and the differential into
consideration, wheel torque results, which represents
the available torque for vehicle motion.

Due to the complexity of the combustion process in an
SI-engine the generation of  internal torque is
described by an empirical approach with physical
intermediate and interface values which take the limited
computation resources of a mass production ECU into
account.

The necessity to determine the controller outputs
based on the required resulting torque means, that the
inverse calculation of the torque model must be
possible.

The basic structure of the model, used for calculating
the internal torque value „tq_i“ is shown in Figure 5.

Figure 5: Simplified Torque Model

In principal, the comprehensive dependency of internal
torque on cylinder charge, engine speed, Lambda,
ignition timing and cylinder individual fuel cut-off could
be described in a five dimension map. The decisive
step to simplify this dependency is the introduction of
two central reference values:

• the optimal spark advance „sa_opt“ and
• the corresponding optimal internal torque „tqi_opt“,

which reaches it’s maximum value at optimal spark
advance.

In some operating points the optimal spark advance is
a theoretical value, because of the engine knock limit.
Both reference values refer to Lambda equal to 1.0 (�
„sa_opt_l1“ and „tqi_opt_l1“) and are defined by 2-
dimensional look-up tables:
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sa_opt_l1  =  fn. (rc, n_eng) (1)

tqi_opt_l1  =  fn. (rc, n_eng) (2)

Relative cylinder air charge „rc“ refers to a 100% value
defined by the displacement per cylinder and the
standard air density. The second influencing variable is
the engine speed „n_eng“.

The actual torque value „tqi“ is the result of a
multiplication with Lambda- and spark advance
efficiencies

eff_lam  =  fn. (lam) (3)

eff_sa  =  fn. (d_sa) (4)

and the reduction factor „eff_red“ caused by a cylinder
individual fuel cut-off:

tqi =

tqi_opt_l1 * eff_lam * eff_red * eff_sa (5)

In equations 3 through 5 „lam“ represents Lambda. For
simplification of the basic equation (equation 5), spark
advance efficiency is defined depending on the
difference between actual spark advance „sa“ and the
optimal spark advance:

d_sa   =   sa_opt - sa (6)

2.2.1.3 Identification of model parameters

Equation (5) describes the decoupling of the five-
dimensional relationship between the internal torque
and it’s influencing variables by introduction of the
optimal internal torque and the optimal spark advance.

Figure 6 shows the dependency of  the spark advance
efficiency „eff_sa“ on the difference „d_sa“ between
optimal and actual spark advance measured at 1000
operating points of a 4-cylinder engine, representing
the total operating range (in engine speed and load).

In Figure 6 a characteristic line is also shown, as a
result of a least-square-optimization [Ref. 5]. The
possibility to reduce the dependency of spark advance
efficiency on „d_sa“ to one single characteristic line is
confirmed by applications of this structure on several
engines with a wide range of cylinder numbers, engine
displacements and combustion chamber designs. This
characteristic is related therefore to the engine design
only and not to an operating point.

Identifying the parameters of the model for a certain
engine only means measuring „tqi_opt_l1“ and the
dependency of „tqi“ on spark advance and Lambda.
The numeric optimization combined with a suitable
control of an engine dyno allows for an automatic
identification of the model parameters, which are
shown in  Figure 5.

2.2.1.4 Calculation of the desired values

As previously mentioned, the torque model is not only
used to determine the actual value of the internal
torque. The  basic equation (equation 5) can also
deliver the desired values of the controller outputs:

tqi_tar = tqi_opt_l1 (rc_tar, n_eng)
* eff_lam_tar
* eff_red_tar
* eff_sa_tar  (6)

Figure 7: Determination of Torque Influencing
Target Values

The target torque value „tqi_tar“ is calculated by
multiplication of the optimal torque at lamba = 1.0 and
optimal spark advance by the efficiencies. Solving
equation (6) for „rc_tar“, „eff_lam_tar“, „eff_red_tar“ or
„eff_sa_tar“ delivers the target values for the controller
outputs which influence torque (Figure 7).

• Priority handling
 When determining target values, a priority handling

must be considered. Under normal operating
conditions, torque demands must be realized by
cylinder charge control to guarantee that spark
advance and Lambda do not differ from the values
determined in the basic calibration.
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• Influence of basic calibration data:
 To compute the desired value of the cylinder

charge „rc_tar“, the target value for „tqi_opt_l1“ has
to be calculated first, taking into account the pilot
control values of the mixture and the spark
advance chosen in the basic calibration, which may
differ from Lambda 1.0 and the optimal spark
advance. Then the desired cylinder charge „rc_tar“
can be computed by using an inverse torque look-
up table

 
 rc_tar = fn. (tqi_opt_l1, n_eng)              (7)
 
• Determination of desired throttle position
 The resulting value „rc_tar“ represents the target

cylinder charge which is necessary to realize the
demanded torque under consideration of the
boundary values (i.e. Lambda and spark advance)
of the specific calibration. In the next step „rc_tar“
is converted into a target throttle opening, using
state parameters from the intake manifold model
described in section ‘Functional Structure’. Finally
the throttle is positioned by a closed loop controller.

• Crank synchronous controller outputs:
 The set of target values for the crank synchronous

controller outputs are determined in a similar
manner. For example the most important target
spark advance is derived from „eff_sa_tar“:

         eff_sa_tar =

     tqi_tar / (tqi_bas*eff_lam_act*eff_red_act)  
(8)

• Influence of actual cylinder charge:
 In equation 8 „tqi_tar“ represents the target value

for the internal torque. The value „tqi_bas(rc_act,
n_eng)“ is an output value of the torque look-up
table with respect to engine speed and the actual  
value of the cylinder charge, measured for example  
by an air mass flow meter or computed based on a
measured intake manifold pressure.

 Taking the real cylinder charge into consideration,
the two torque conversion paths (cylinder charge
path and crank synchronous path in Figure 7) are
linked, so that no other coordination of the two
paths is necessary.

2.2.1.5 Valuation of torque-based structure

The system architecture based on the internal torque
provides the following advantages:

• Improved accuracy when processing system
internal or external torque demands. This
improvement is reached by means of a central
conversion of coordinated torque demands which
avoid interactions between the control variables
(cylinder charge, Lambda, ignition timing and
cylinder individual fuel cut-off).

• Simplified calibration:
 The characteristic lines and look-up tables of the

torque control are only dependent on engine data,
so there are less interactions with other control

functions. As a result of modifying the engine
design only the characteristic lines and look-up
tables have to be actualized.

 Due to the fact that external systems have no direct
impact on the throttle angle or the ignition timing,
for example torque demands of a traction control or
drive train control system are independent on the
current status of ME7 data calibration.

 Further simplification is a result of the consistent
data-base for all controller outputs. If for example
the engine efficiency should be reduced at a given
driver’s demand, the desired torque value to be
realized via the cylinder charge path can be
increased, leading automatically to a decrease of
spark advance. Therefore it is not necessary to
calibrate the two paths separately.

 The system can be expanded easily for future
system requirements such as a drive train
management for conventional gear box or a CVT
[4], gasoline direct injection, variable valve timing,
and so on.

2.2.2  A/F management  

In addition to the torque management the ME7 system
is also provided with A/F management (Figure 8).

The A/F management consists of 3 essential
components:

• The basic calibration:
 Here all mixture variations caused by systematic,

reproducible system tolerances are eliminated. The
target of the basic calibration is a Lambda equal to
1.0 under all operating conditions.  

 

 
Figure 8: Characteristic Lines of Lambda Limits

and Lambda Pilot Values

• Lambda pilot control:
 In addition to the basic calibration the desired

Lambda value can be chosen depending on the
operating condition. Therefore an enrichment
during start or warm-up could be carried out for
example. Furthermore an enleanment could be
realized in the case of lean-burn concepts.

 
• Lambda limits:
 To coordinate the A/F ratio without cross-coupling

of the calibration data, (i.e. for warm-up and

Pilot control

L
am

b
d

a

Lean

Rich

1.0 Temperature

 Rich
Lambda limit

 Lean 
Lambda limit

Basic Calibration (Lambda=1.0) 
+ Lambda-Variation (Pilot Control) 
+ Lambda-Limitation



catalyst heating) the range of Lambda variation is
limited.  The limit values are defined by the
mixture’s flammability dependent on the engine
operating point.

 
2.2.3  Physically based functions  

Many platform functions in the ME7 are realized, based
on a physical model of the controlled system. The step
from heuristic functions to physically based functions
requires a sufficient mathematical model of the
controlled system. A major advantage of this concept is
the physical interpretation of internal and interface
values for improved comprehensibility and
transparency.

Because of the link to physical reality it is easier to
define platform functions and to reuse them in different
system configurations or future EMS generations.
Using a set of platform functions also allows to transfer
a calibration data set from one project to another.

As an example for the physically based functions used
in the ME7 the following determination and control of
the cylinder charge is described on the basis of an
intake manifold model.

In this model the intake manifold pressure as a central
state variable is calculated to determine the cylinder
charge during  dynamic and steady state operation.
The model considers the influences of all operating
conditions which modify the manifold pressure, such as
purge control, external and internal EGR and
resonance flap control.

Figure 9 shows the system configuration:

Figure 9: Intake Manifold of an SI-Engine

The model balances all mass flows into the intake
manifold and all mass flows into the combustion
chamber. Important input variables of the model are the
air mass flow into the intake manifold metered for
example via an air mass flow meter and the modeled
combustion chamber temperature. As shown in Figure
10 the basic equation of the intake manifold model is
generated by differentiation of the gas equation.

In the first step the intake manifold pressure is
calculated based on the air mass flow measured by the
air mass flow meter. With the assumption of a linear

relationship to the intake manifold pressure the relative
cylinder charge can be determined.  [Ref.6],[Ref.7]. In
a speed-density system the modeled intake manifold
pressure is replaced by the measured value.

Figure 10: Basic Equation of Intake Manifold

The integration of an intake manifold model allows for
more the determination of a correct cylinder charge
under steady state and dynamic operating conditions.
Further motivation to apply this model to the ME7
system is the necessity of a cylinder charge control.
The throttle position has to be calculated according to
the required engine torque (Figure 11).

Figure 11: Cylinder Charge Control
Structure in ME7

Main input values of this controller are the modeled
intake manifold pressure and two adaptive values
which eliminate the influences of air leakage and
tolerances between the cylinder charge signal and the
expected throttle position at a given air mass flow and
engine speed .

2.3  SOFTWARE STRUCTURE

2.3.1  Changes Made  

Requirement analysis or constructing a requirement
model is not a simple sequential step, which is finished
before the architecture, design, implementation and
test development activities have started. There is
extensive overlap between the phases. The process is
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iterative, both within each phase and over multiple
phases. This is especially true for a platform
development, supporting a complete product family
with a broad variance in system and customer specific
configurations.

Systems evolve in time. Building a new system from
scratch is not the typical approach, due to restrictions in
development time and effort. The ME7 was built from
an existing system in an incremental and evolutionary
manner, thus being able to deliver a running system for
test and calibration purposes right from the beginning.

The maintenance or reengineering phase therefore
does not begin with the delivery and it does not end
with delivery and mass production. The maintenance
phase is in fact the most important phase to prove
expansion capability, reuse and variants engineering.

Hard facts are the ever increasing complexity,
changing functional requirements and continuously
tightened nonfunctional requirements related to quality,
cost and time to market.

Development systems have to handle these real world
aspects to immediately improve the situation. In the
ME7 development therefore a selected set of changes
was planned and introduced step by step. This process
is still ongoing.

There are bottom up forced changes. The use of high
level programming languages, ANSI C instead of
Assembler in the ME7, is one example. There is no
sensible way to handle Assembler programs of such
complexity. The systematic introduction of specification
simulation and code inspection methods are further
examples for this class of changes, which were
absolutely necessary.

Changes with "top down character" in the project were
the development of a new functional structure and of a
software architecture to support their implementation in
a product line.

2.3.2 Context  

What is the system we are talking about? Traditionally
we find a dedicated electronic control unit (ECU) for
engine management, connected to a lot of sensors,
actuators and other control units or monitoring devices
in the car. The system consists of  the ECU itself and
all the devices it is connected to. Proceeding in an
incremental and evolutionary way the context diagram
is drawn by replacing the ECU with the single
transformation "control & monitor engine" and the
devices connected to it are the terminators. In the ME7
project this partitioning was a given fact. (The context
diagram partitions the information and processes that
are within the scope of the system and those that are
outside the scope)

The ECU has one or two standard microcontrollers and
peripheral electronics functionally comparable to former
systems. The peripheral electronics are more highly

integrated. The mechanical design of the ECU is also
new, supporting surface mounting of all electronic
devices. Furthermore variants in microhybrid
technology are available, which offer new options in
mechanical system integration. Yet the partitioning
between hardware and software was not under
consideration in the project. Being aware of the many
changes in the development process, functional
structure and software was a conscious decision for
risk management.

There are various possible system configurations with
more than a hundred input and output flows, however
all have in principle the same topology and a lot of
commonalties. Measuring engine speed and load are
examples for commonalties on an abstract level
between all system variants.

Most important for a given system variant a static
environment can be assumed, therefore a deterministic
system approach was chosen.

2.3.3 Architecture  

In the architectural development the question how to
design has to be answered. The functional
requirements at one level must be rigorously allocated
to a physical structure with nonfunctional requirements
added.

2.3.4 Software architecture  

Following strategies for real time system specification
as described, for example, by Hatley and Pirbhai [Ref.
11] or Goldsmith [Ref. 12] and using the principles of
abstraction and decomposition, the technology
independent requirements model has to be
transformed in a technology-nonspecific physical
model. Therefore buffers are inserted between the
essential requirements model core and the
environment. The resulting architecture template
embeds the requirements model core into input
processing and output processing architecture blocks.
Also blocks for interface-processing and self-test are
added as shown in Figure 12.

Self-Test,... processing

Interface,...processing

Output processingInput processing

Requirements Core

Information

Control

Transformation

Figure 12: Architecture Template

The essential requirements model describes what the
logical outputs should be, depending on the logical
inputs. It assumes ideal technology, though all the input
flows are in parallel and instantly transformed into the
corresponding output flows. The input and output
processing blocks have to convert the physical flows



into the logical flows described by the requirements
core model. This model has to be enhanced by the
timing requirements. For all the logical flows response
times or actualization rates, the resolution, accuracy
and value ranges must be specified.

The further decomposition into architecture modules,
architecture flows and so on, ending in code
organization charts is a sophisticated process.
Important guidelines for partitioning are the general
principles of cohesion and coupling, as known from
structural analysis and design methods. This is also
valid for object based or other methods and languages
for real time system description and construction.
Independent from the methods used, this is an
example of the already mentioned inherent iterative
and recursive character of complex systems
development.

The intention here was to minimize the influence of the
µC and the various configurations, using different
sensors and actuators on the design and
implementation of the requirements core block. The
requirements model represents the knowledge about
the application work and should be reused even on the
implementation level for the whole product family and
also for further generations of engine management
systems. A set of rules for architecture, design and
implementation is necessary to encapsulate the µC and
system configuration dependencies.

2.3.4.1  Layer structure model

The top level of the set of rules used in this project is
shown graphical in Figure 13.

One idea of a layer based architecture is, that lower
layers offer all the services needed by higher layers.
The supporting character of offering services is
visualized here by the triangles. It is important to
recognize that their semantic is not equal to flow. The
user program gets it’s inputs by using services and it
provides the outputs for example by using services of
the hardware encapsulation layer.

The run-time part of ERCOS (Embedded Real-time
Control Operating System), [Ref. 13] follows the
concepts of virtual machines, or simply it offers
services for scheduling, inter-process communication
and so on, to construct and support applications with
hard real-time requirements.

The user library consists of arithmetic, filtering,
integration and interpolation routines. They are
application dependent and most of them are
implemented in Assembler, using all the features of the
µC for best efficiency.

Hardware

ERCOS
Real Time Operating System

Hardware
Encapsulation

User Program

User Library

        Figure 13: Layer Structure Model

The hardware encapsulation contents serves to read
ADC-Channels, reading digital inputs, setting digital
outputs, CAN-Handling, or generating PWM-Signals.
Also most parts of the input and output processing are
contentented in this layer. This is also true for the
interface processing and self-test architecture blocks.
The hardware encapsulation therefore has an inner
structure, which has to be very carefully designed and
shown as a mission critical point for success.

Together the operating system, the user library and the
hardware encapsulation can be thought of as a
hardware abstraction layer.

Looking at Figure 12 and remembering the concept to
make the design and implementation for the
requirements core model as independent from the
hardware as possible, it should be reside in the user
program layer.

Maybe this sounds theoretical, but in the project we
experienced positive examples to show that it works.
Different electronic throttle bodies are supported with
no influence on the software in the user program layer
and different load measurement sensors can be used
by simply exchanging a few parts in the software.

2.3.4.2 Object Model

ERCOS offers a complete framework and is a object
based language for real time system construction.

The basic object classes that are supported are
processes, functions, messages and resources (Figure
15). Out of the basic classes only processes are active.
A function is a passive object which can be called.
Messages are basic objects for communication
between processes and provide the methods send and
receive. To model resources which can only be
accessed exclusively, resource objects are provided
with the methods get and release.



Figure 14: Basic Objects and their Relations

Complex objects, the previously mentioned
„subsystems“ with well defined interfaces can be
constructed out of basic objects. Each subsystem
defines which objects constitute the interface and which
are hidden inside. Figure 15 shows an example of a
subsystem which provides a function and a message
as an interface. Additionally, to implement the required
functionality there are two processes, two functions and
one resource which are hidden inside the subsystem.
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Process
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Process
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Call
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Call

Function

Call

Function

Message

Send
Receive

Subsystem

Figure 15: A Complex Object (Subsystem)

The object model is supported by a set of tools
(ERCOS-Off L  ine T  ools) which have been developed to  
allow easy construction of object-based software while
providing interface checks for consistency and
optimization techniques for the runtime management of
objects. The subsystem concept of ERCOS is one
major step towards software sharing and open
systems.

2.3.4.3 Scheduling

A combination of static and dynamic scheduling
together with a mixed preemptive/cooperative
scheduling strategy is supported. Due to hard efficiency
constraints in the project as a result of hardware cost,
mostly static scheduling is used. Tasks are
implemented as schedule-sequences that contain a
sequence of processes to be executed in the specified
order and at a given priority level upon occurrence of a
certain activation event (Figure 16).

Only a small amount of the application has short
latency requirements which requires preemptive
scheduling while the large remainder can be scheduled
cooperatively. This is realized by a hierarchical
scheduler concept where the cooperative scheduler is
subordinated under the preemptive scheduler. The
cooperative scheduler is treated as a single task at the
lowest priority level of the preemptive scheduler. Both

scheduling strategies use fixed priority assignments.

Figure 16: Tasks

It is possible to assign an interrupt source to a
preemptive priority level. There is no distinction
necessary between tasks that are activated by
hardware (interrupts) or by software. Thus a unified
concept for hardware and software activated tasks is
provided.

Additionally multiple operating modes are supported, to
allow completely different configurations (i.e. factory
testing, flash programming and driving mode).

Figure 17: Scheduler

2.4  SYSTEM FAMILY

The system architecture characterized by a torque-
based system structure, an A/F management and the
use of physical based functions allows the generation
of a system family containing

• the EMS with integrated throttle control (ME7)
• the conventional (M7) system with a bypass idle

speed actuator
• the system for gasoline direct injection (MED7)
• and the system for a complete drive train

management (MEG7).

The design of a consecutive system generation, based
on the same system architecture but using a different
CPU architecture is also possible (Figure 18).

• M7: System without ETC
 To create this conventional or basic system without
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ETC the cylinder charge control has to be limited to
the operating range of the idle speed actuator. Due
to the fact, that there is a fixed mechanical link
between the pedal and the throttle position, the
throttle position represents the driver’s request.
With the help of these major supplements the M7
system was derived very easily and in a very short
development time.

 

 
Figure 18: Roadmap of System Family

• MED7: System for gasoline direct injection
 The main functions provided in addition to the ME7

system are: [Ref.14],[Ref.15]
♦ Control of torque and emissions under

stratified and homogeneous operation and
the transition between these two states.

♦ Control of an EGR system with high flow
rates.

♦ Control of the entire fuel system including
the high pressure control and the operation
of high pressure injectors.

♦ Canister purge control for homogeneous
and stratified operating conditions.

♦ Control of a NOx storage catalyst
♦ Suitable monitoring concept

• MEG7: Drive train management
 The step from the management of engine related

torques to a drive train management includes not
only the EMS but also the control of the
transmission and the torque converter. Therefore
an integrated drive train control means
coordinating all torque demands on the level of
drive train output torque. An optimized control
strategy of  all drive train components allows a
further reduction of  emissions/ fuel consumption
[Ref. 15], [Ref. 3].

• CARTRONIC
 A further step is the management of all torque-

related demands on the basis of wheel torque,
which allows the integration of all vehicle related
torque demands including not only current vehicle
dynamic control systems but also an active braking
system for example. [Ref. 4].

 
3.  CONCLUSION

• There is a broad range of system configurations
supported by the EMS product family based on the
ME7. Standard MOTRONIC M7, MOTRONIC with
electronic throttle control ME7, MOTRONIC with

electronic throttle control and integrated
transmission control MEG7, and MED7 for gasoline
direct injection engines are all members of this
family.

• ERCOS is now the standard operating system for
BOSCH automotive products. As an open market
product it is available from the company ETAS for
different microcontroller platforms . In the EMS
product line the run time part is reused bit for bit in
all products.

• The encapsulation of sensors/actuators for
different system configurations and the µC in a
hardware abstraction layer are the foundation for
reuse and flexibility. Benefits of the new functional
structure are the improved physical transparency of
the system, and the separation of engine and
function related calibration data. The introduction of
the new functional and software structure as a core
of the product family enables future challenges to
be met, such as an extended system, for example
CARTRONIC.
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ABBREVIATIONS

A/C AirC  onditioner  
ADC Analog D  igital C  onverter  
ANSI C American N  ational S  tandard  

Institution - C- Programming Language  
CAN Controller A  rea N  etwork  
CARTRONIC Structure and order of all functions,

controlled by elecTRONIC control  
modules in a CAR.  

CPU Central P  rocessing U  nit  
CVT Continuously V  ariable T  ransmission  
ECU Electronic C  ontrol U  nit  
EGAS Electronic GAS  pedal  
EGR Exhaust G  as R  ecirculation  
EMS Engine M  anagement S  ystem  
EOBD European O  n-B  oard D  iagnosis  
ERCOSEmbedded R  eal Time O  perating  

System  
ETC Electronic T  hrottle C  ontrol  
M7 MOTRONIC system without ETC  
ME7 MOTRONIC system with integrated  

ETC  
MED7 MOTRONIC system with E  TC  

for gasoline Direct injection  
MEG7 Powertrain management system
MOTRONIC BOSCH engine management system
MY Model Y  ear  
µC Micro C  ontroller  
OBD II On-B  oard D  iagnosis - stage II  
OSEK Open S  ystems and the C  orresponding  

interfaces for automotive Electronics  
PWM Pulse W  idth M  odulation  
SI-engine Spark I  gnition E ngine  

d_sa = sa_opt - sa
eff_lam Lambda efficiency
eff_lam_act Actual Lambda efficiency
eff_red Reduction factor
eff_red_act Actual reduction factor
eff_sa Spark advance efficiency
eff_..._tar Target efficiency values
fn. Function of, depending on
lam Lambda
lam_bas Lambda of basic calibration
n_eng Engine speed
rc Relative cylinder charge
rc_act Actual relative cylinder charge
rc_tar Target value rc
sa Ignition angle reffering to TDC
sa_bas Spark advance of basic calibration
sa_opt Optimal spark advance
sa_opt_l1   Optimal sa at lamda 1.0
tq_i Internal torque, generated by

combustion
tqi_bas tqi at sa_bas and lam_bas
tqi_opt, Optimal internal torque
tqi_opt_l1 Optimal tq_i at Lambda 1.0
tqi_tar Target value t_qi
tqi_opt_l1 Optimal tq_i at Lambda 1.0


